Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 207: 108397, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316099

RESUMO

More than 8 million deaths are caused by tobacco-related diseases every year. A staggering 1.2 million of those fatalities occur due to second-hand smoke exposure among non-smokers, but more than 7 million are due to direct tobacco use among smokers. Nicotine acts as the key ingredient triggering the addiction. The United States Food and Drug Administration (FDA) has classified more than 90 chemical components of tobacco and related smoke as hazardous or potentially hazardous leading to cancer, cardiovascular, respiratory, and reproductive disorders. Hence, reducing nicotine content has been the foremost objective to reduce health and death risks. Therefore, various biotechnological approaches for developing tobacco varieties with low nicotine concentrations are urgently required for the welfare of humankind. In recent years, numerous advancements have been made in nicotine-based tobacco research, suggesting regulatory components involved in nicotine biosynthesis and developing nicotine-less tobacco varieties through biotechnological approaches. This review highlights the various regulatory components and major approaches used to modulate nicotine content in tobacco cultivars.


Assuntos
Nicotina , Tabagismo , Estados Unidos , Biotecnologia
2.
J Hazard Mater ; 465: 133255, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38103287

RESUMO

Tobacco remains one of the most commercially important crops due to the parasympathomimetic alkaloid nicotine used in cigarettes. Most genes involved in nicotine biosynthesis are expressed in root tissues; however, their light-dependent regulation has not been studied. Here, we identified the ELONGATED HYPOCOTYL 5 homolog, NtHY5, from Nicotiana tabacum and demonstrated that NtHY5 could complement the Arabidopsis thaliana hy5 mutant at molecular, morphological and biochemical levels. We report the development of CRISPR/Cas9-based knockout mutant plants of tobacco, NtHY5CR, and show down-regulation of the nicotine and phenylpropanoid pathway genes leading to a significant reduction in nicotine and flavonol content, whereas NtHY5 overexpression (NtHY5OX) plants show the opposite effect. Grafting experiments using wild-type, NtHY5CR, and NtHY5OX indicated that NtHY5 moves from shoot-to-root to regulate nicotine biosynthesis in the root tissue. Shoot HY5, directly or through enhancing expression of the root HY5, promotes nicotine biosynthesis by binding to light-responsive G-boxes present in the NtPMT, NtQPT and NtODC promoters. We conclude that the mobility of HY5 from shoot-to-root regulates light-dependent nicotine biosynthesis. The CRISPR/Cas9-based mutants developed, in this study; with low nicotine accumulation in leaves could help people to overcome their nicotine addiction and the risk of death.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Fatores de Transcrição/genética , Hipocótilo/genética , Hipocótilo/metabolismo , Nicotina , Proteínas de Arabidopsis/genética , Nicotiana , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Mutação , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...